
e-Book

Dealing with the complexities of
deploying, managing, and scaling
EKS across multiple AWS accounts

Managing EKS
at scale

Table of contents

Introduction

1 - Setting the Foundations

2 - Initial setup and transition

3 - Infrastructure pipelines

5 - Deployment with ArgoCD

4 - EKS cluster management

6 - Mastering autoscaling

7 - Enhancements & optimizations

8 - Monitoring with Datadog

9 - The path ahead

Architecture for managing EKS clusters

Architecture for infrastructure pipelines

Kubernetes clusters across environments

Advanced tools for streamlined EKS cluster management

Autoscaling example

The Transition to AWS Load Balancer Controller

Optimizing application resilience with (anti-) affinity rules

8

14

24

19

28

31

32

3

4

10

21

17

25

29

34

37

6

We'll walk you through the entire journey, from the
initial setup of EKS clusters to the automation
strategies that keep them running smoothly. This
includes an exploration of the tools and practices
that have streamlined operations, reduced
overhead, and maintained high agility and
reliability across a cloud infrastructure.

Whether you're a cloud engineer refining your EKS
approach or part of a team scaling your
Kubernetes operations.

Let's dive into the specifics of managing EKS at
scale, focusing on automation, best practices,
and lessons learned.
Enjoy!

On behalf of Aknostic’s engineering team,

Jurg van Vliet - CEO

Introduction
If you’re reading this, you must be a well seasoned cloud engineer looking for ways to
master the management of AWS EKS at scale, right? Or you might just be interested
in how to approach these kinds of challenges. Either way, great to have you here!

This guide’s aim is to ensure that every
development team can focus on their applications
without being bogged down by the intricacies of
the infrastructure that powers them. This guide
shares insights and methodologies that have
proven effective in real-world scenarios. Because
efficiency and automation are not just goals;
they're necessities.

Drawing from firsthand experience, this ebook
addresses the complexities of deploying,
managing, and scaling EKS across multiple AWS
accounts.It provides a clear account of what works,
the challenges faced, and strategies for
overcoming them.

EKS may be a good choice if you have large or
complex applications, as it can scale more
easily and handle more traffic. If you are new to
Kubernetes, ECS may be a better choice, as it is
more beginner-friendly.

3

W H E N T O U S E E K S

1
Setting the
foundations

Anchor your strategy on core
requirements and guiding principles

By fostering a knowledge-sharing culture, teams
can learn from each other's experiences and
document best practices. This creates a valuable
knowledge base for the entire organization. A
disciplined approach is essential to ensure this
culture is maintained.

Making development teams self-sufficient is
another key objective. By minimizing
dependencies and enabling independent
deployment, teams can accelerate development
cycles and reduce bottlenecks. Providing them
with the necessary tools and permissions allows
for innovation, experimentation, and faster
adaptation to changing requirements.

This approach reduces IT infrastructure
management overhead, allowing developers to
focus on their core competencies. By abstracting
away complexities, developers can concentrate
on delivering value rather than being bogged
down in operational details. This approach is
designed with cost efficiency in mind, through
automation, efficient resource utilization, and
elimination of redundant efforts.

Setting the foundations
Before we go into depth on the matter, to effectively manage EKS at scale, you should anchor
your strategy on core requirements and guiding principles. These foundational elements
shape your approach and ensure that your cloud infrastructure can support the rapid pace of
innovation and the diverse needs of your development teams.

Let’s start with the obvious thing here:
centralization is key. By managing your AWS
infrastructure and Kubernetes services from a
single point of control, you can maintain
consistency, enforce security standards, and
streamline the deployment process across all your
environments. This approach allows you to
automate repetitive tasks, reducing the potential
for human error and freeing up your teams to
focus on more strategic initiatives.

While central management provides the oversight
you need, flexibility at the local level is crucial.
Development teams need the ability to configure
parameters specific to projects, such as Node
Pools and Application Load Balancers (ALBs),
without compromising the overall integrity of your
infrastructure. This balance between central
governance and local autonomy is essential for
catering to each project's unique requirements.

Automation stands at the heart of your operations.
Automating deployments and upgrades ensures
that your clusters are always running the latest
software versions, packed with the newest features
and security patches. This minimizes downtime
and significantly reduces the workload on your
technical operations team, allowing them to
concentrate on more complex challenges.

central management of
AWS infrastructure &
cluster services
local configuration of
parameters
automated deployments
& upgrades
knowledge sharing
culture
self-sufficient
development teams
lower costs

Core requirements
and guiding principles

5

2
Initial setup
and transition

Supporting a growing number of
applications and development teams

7

Initial setup and transition
We’re making an estimated guess here, but your (company’s) wish to evolve the EKS setup is
probably driven by the need to support a growing number of applications and development
teams. Your setup may already include multiple EKS clusters of varying sizes to meet the
diverse requirements of different projects. Whatever scenario applies to you, each team or
project should typically operate within separate AWS environments for development, staging,
and production, ensuring a clear separation and facilitating smoother deployment processes.

It’s recommended to set up a comprehensive
architecture for managing EKS clusters within a
VPC spanning three Availability Zones, ensuring
high availability and fault tolerance. It includes
public subnets for external Application Load
Balancers (ALBs) and optional Network Load
Balancers (NLBs), non-routable private subnets for
system and worker nodes (both primary and
secondary), and routable private subnets for
internal NLBs. This setup strategically distributes
components to maximize performance, security,
and scalability, providing a robust foundation for
running EKS at scale.

Your Initial Setup
When you begin your transition, your clusters
might operate on earlier versions of Kubernetes.
Over time, as Kubernetes evolves, you can
meticulously upgrade them to stay abreast of the
latest versions, ensuring you can utilize the newest
features and security enhancements Kubernetes
offers.

Diagram
 1: architecture for m

anaging EKS clusters

External Application Load
Balancer
Routes traffic from the internet to
services in the public subnet,
typically configured for HTTPS with
SSL termination for secure external
access.

Auto Scaling Group
Hosts critical system components
like the Kubernetes control plane,
DNS, and network management.
Scaling ensures the availability of
core services.

Private Subnets
Isolated from direct internet
access for enhanced security.
Used to host internal components
such as system nodes and worker
nodes.

8

Architecture for managing EKS clusters

EKS setup
t’s recommended to set up a comprehensive
architecture for managing EKS clusters within a
VPC spanning three Availability Zones

9

benchmark them, we advise you to make use of
Karpenter, an open-source tool developed by
AWS. Karpenter marked a significant shift in
managing your clusters, offering unparalleled
flexibility. With Karpenter, you can specify instance
types, availability zones, and purchasing options
(on-demand vs. spot instances) with granular
control, directly addressing the unique
requirements of each deployment.

This move is not just a technical upgrade; It also
allows you to scale your clusters more efficiently,
responding to traffic spikes without manual
intervention and significantly reducing the time
required to scale up resources. Moreover,
Karpenter's ability to interact directly with the EC2
Fleet API streamlines operations, cutting down the
time to scale from a few minutes to tens of
seconds in many cases.

The Impact of the New Setup
The transition to a Karpenter-based infrastructure
should profoundly impact operations. It enhances
the clusters' responsiveness, enabling you to
handle sudden increases in load easily. This
agility ensures that applications remain
performant and reliable, even under the most
demanding conditions.

Furthermore, moving to Karpenter and adopting
more advanced AWS services like the AWS Load
Balancer Controller for Kubernetes allows you to
automate and fine-tune your load-balancing
strategies. This improves applications' availability
and resilience and gives your clients’
development teams more autonomy in
managing their services.

The clusters' sizes may vary, reflecting the specific
needs of the applications they host. Depending on
the application's user base, complexity, and
performance requirements, a cluster can have
multiple worker nodes. This flexibility allows you to
tailor your resources to match demand,
optimizing performance and cost.

Skip the line with Karpenter
As your understanding of EKS deepens and your
needs evolve, you will need a more dynamic,
scalable infrastructure. There are numerous tools
available for Kubernetes, each fulfilling a specific
need. If you don’t have a good overview of what’s
on the market and not enough time to proficiently

3
Infrastructure
pipelines

The backbone of EKS deployment

11

Infrastructure pipelines: The backbone
of EKS deployment
Having established the foundational setup of your EKS clusters and implemented automation
strategies for smooth operations, the next step is to scale your infrastructure efficiently across
multiple environments. This involves adopting a robust, centralized management approach to
ensure consistency, control, and scalability.

Infrastructure backbone

Without a structured approach to managing EKS clusters at scale,
you risk encountering significant inefficiencies and inconsistencies.
Integrating CloudFormation StackSets with AWS CodePipeline is
crucial. This combination forms the backbone of your infrastructure
pipelines, enabling you to deploy and manage EKS clusters across
multiple AWS accounts with precision and control. Without this
structured integration, you could face fragmented deployments,
increased manual intervention, and potential configuration drifts,
ultimately leading to operational headaches and reduced
scalability.

Diagram 2: infrastructure pipelines

This chapter will delve into a multi-account AWS architecture designed to streamline EKS
cluster management and deployments. This architecture makes use of AWS CodeCommit, AWS
CloudFormation, and AWS CodePipeline to manage resources centrally from a core
management account. In our experience, this ensures seamless deployment and operational
consistency across development, acceptance, and production environments. Let's explore how
this setup can transform your EKS management practices.

Project 1 - dev Project 1 - acc Project 1 - prd

Core management

Stack Set
Instance:

Repository

Stack Set:

Repository

Code
pipeline:

shared-codepipeline-eks

core-cloudformation

shared-codepipeline-eks

core-cloudformation

dev & acc

Stack:

shared-eks

Stack:

shared-eks

Stack:

Code
pipeline:

shared-eks

prod

12

The diagram on page 15 shows a
clear and structured way you can set
up a multi-account AWS architecture
for managing and deploying EKS
clusters and related resources. It
features a core management
account (core-mgmt) that
centralizes the configuration and
deployment processes using AWS
CodeCommit, AWS CloudFormation,
and AWS CodePipeline. The core-
mgmt account contains repositories
for CloudFormation templates, which
are used to create and manage
stacks, and a centralized
CodePipeline that orchestrates
deployments.

Project-specific accounts (project1-
dev, project1-acc, and project1-prd)
utilize these centrally managed
resources through CloudFormation
StackSets, ensuring consistent
infrastructure deployment across
environments.

All ArgoCD instances can run on a
dedicated management cluster.
This separation of concerns
enhances security by isolating the
deployment mechanism from the
application.

Argo Project, 2024

The development and acceptance
environments (project1-dev and
project1-acc) have their own
CloudFormation stacks deployed
from the shared pipeline, while the
production environment (project1-
prd) has a dedicated pipeline for
more controlled deployments. This
architecture enhances efficiency,
scalability, and consistency in
managing EKS clusters across
multiple AWS accounts.

To get a deeper understanding how
these elements work together, let’s
break down this process by
discussing them individually:

CloudFormation StackSets:
Centralized Management with a
Twist
CloudFormation StackSets allow you
to manage AWS resources across
multiple accounts and regions
through a single operation. By
defining your infrastructure as code,
you can ensure consistency,
repeatability, and scalability in your
deployments. With StackSets you can
deploy resources in multistage
deployment pipelines across your
accounts.

Infrastructure pipelines: The backbone of EKS deployment

13

Stack Set Instances Deploy Code
Pipelines
You can utilize StackSet instances for
each project to deploy AWS
CodePipeline in the project's
production accounts. These pipelines
are the arteries through which your
code and infrastructure updates flow
from source control to each
environment. By managing these
pipelines through StackSets, you can
maintain high control and visibility
over the deployment process,
ensuring that every account is
aligned with your central governance
model.

CodePipeline: The Deployment
Maestro
AWS CodePipeline orchestrates the
deployment of your EKS stacks
across development, staging, and
production accounts.

Each pipeline is configured to trigger
automatically upon code commits,
pulling in the latest changes and
initiating the deployment process.
This automation ensures that your
environments are always up-to-date
with the latest codebase, minimizing
manual intervention and
accelerating the delivery of new
features and updates.

A Three-Stage Deployment Process
The deployment process is
meticulously structured into three
stages, reflecting your commitment
to quality and reliability:

Development: The first stage targets
your development accounts, where
new features and updates are
deployed for initial testing and
validation. Most heavy lifting occurs
in this environment, with developers
pushing changes frequently to
iterate rapidly on new ideas.

Staging: Once changes have passed
initial tests in the development stage,
they move to the staging
environment. This stage serves as a
pre-production checkpoint, where
deployments are scrutinized under
conditions that closely mimic the
production environment. It's a critical
step for catching any issues before
they impact users, e.g., load testing.

Production: The final stage is the
deployment to production accounts,
where the changes become
available to end-users. Deployments
to production are handled with extra
care, often requiring manual
approval to proceed. This stage
embodies your commitment to
delivering stable, reliable software to
your users, ensuring that new
features and updates enhance their
experience without disruption.

Infrastructure pipelines: The backbone of EKS deployment

AWS CloudFormation
Deploys and manages shared EKS
infrastructure across accounts.

Core management
The core management account
(core-mgmt) that centralizes the
configuration and deployment
processes using AWS
CodeCommit, AWS
CloudFormation, and AWS
CodePipeline.

AWS CodeCommit
Stores infrastructure-as-code for
CloudFormation templates.

AWS CodePipeline
Automates deployment workflows
between environments.

Developer platform
The development and acceptance
environments (project1-dev and
project1-acc) have their own
CloudFormation stacks deployed
from the shared pipeline, while the
production environment (project1-
prd) has a dedicated pipeline for
more controlled deployments.

Architecture for infrastructure pipelines

Scaling your infrastructure
This next step involves adopting a robust,
centralized management approach to ensure
consistency, control, and scalability.

Project 1 - dev Project 1 - acc Project 1 - prd

Core management

Stack Set
Instance:

Repository

Stack Set:

Repository

Code
pipeline:

shared-codepipeline-eks

core-cloudformation

shared-codepipeline-eks

core-cloudformation

dev & acc

Stack:

shared-eks

Stack:

shared-eks

Stack:

Code
pipeline:

shared-eks

prod

14

15

The Outcome: Efficiency,
Consistency, and Speed
By leveraging CloudFormation
StackSets and AWS CodePipeline, you
can achieve a level of efficiency and
consistency previously unattainable.
The infrastructure pipelines
automate the heavy lifting of
deployment and management,
freeing your client’s teams to focus
on innovation and development.
Moreover, this approach has
significantly accelerated your ability
to deliver new features and updates,
keeping you agile and responsive in
a competitive landscape.

Structured Branching Strategy for
Environment Separation
Managing and automating the
deployment of Amazon Elastic
Kubernetes Service (EKS)
environments necessitates a
structured and strategic approach

designed to balance agility with
stability across various stages of
development. At the heart of this
strategy lies a branching
methodology that segments the
infrastructure codebase into distinct
branches, each tailored to specific
environments.

This includes a dedicated branch for
the Development and Staging
environments, which facilitates rapid
development and testing, alongside
a separate branch for the Production
environment, which ensures that
changes deployed here are
rigorously tested and approved.

This clear separation allows for
precise governance and control over
deployments. It aligns with the best
practices for infrastructure as code
(IaC), ensuring what gets deployed
and when it is managed.

The deployment process is further
refined by an automated system with
built-in manual checkpoints. For
Development and Staging
environments, deployments are
triggered automatically by changes
to their respective branches,
supporting a fast-paced
development cycle that enables
teams to iterate on new features and
fixes swiftly. Conversely, the
Production environment introduces a
manual approval step, a critical
checkpoint. This step is crucial for
ensuring that all changes destined
for production are thoroughly
reviewed and vetted, thereby
minimizing the risk of disruptions to
end users and maintaining the
integrity and reliability of the
production environment.

Infrastructure pipelines: The backbone of EKS deployment

The Outcome: A Streamlined
Deployment Pipeline
By employing this structured
approach to EKS deployment, the
team achieves several key
outcomes:

Efficiency: Automated
deployments to development
and staging environments
accelerate the development
cycle, allowing teams to focus on
building and testing rather than
manual deployment processes.
Stability: The manual approval
process for production
deployments ensures that only
thoroughly tested and reviewed
changes make it to the live
environment, maintaining the
stability and reliability of the
production services.

16

Local Configuration Management
The AWS Systems Manager
Parameter Store manages local
configuration details. This approach
centralizes configuration
management, allowing for secure
storage and easy retrieval of
configuration parameters. It enables
development teams to adjust their
environment configurations without
altering the core deployment scripts,
adding a layer of flexibility and
control.

Deployment Automation via
CodeBuild
The deployment process leverages
AWS CodeBuild, a fully managed
continuous integration service, to
execute the deployment jobs. These
jobs are responsible for configuring
and bootstrapping the EKS clusters
and preparing the stage for ArgoCD.

Flexibility: Managing local
configurations through the
Parameter Store and automating
cluster configuration with eksctl
and kubectl allows teams to tailor
their environments without
compromising security or
compliance.

Infrastructure pipelines: The backbone of EKS deployment

4
EKS cluster
management

Advanced technologies to use
through ArgoCD

18

Networking with VPC CNI

First up is VPC CNI. Networking is the lifeblood of
any Kubernetes cluster, and the AWS VPC CNI
plugin is a cornerstone. It can integrate your
clusters seamlessly with AWS's scalable
networking infrastructure, ensuring your pods are
first-class citizens within the VPC and benefit
from native AWS features like security groups
and VPC flow logs.

Storage Solutions: EFS CSI and EBS CSI

Storage can be another critical component of
your infrastructure. You can utilize both the EFS
CSI and EBS CSI drivers to provide your
applications with the flexibility and performance
they need. EFS for shared, scalable file storage
and EBS for block storage, ensuring your
applications have access to the persistent
storage solutions they require, optimized for their
specific needs.

Autoscaling: From Cluster Autoscaler
to Karpenter

Autoscaling is where you can genuinely embrace
the dynamic nature of cloud-native applications.
Starting with the Cluster Autoscaler, you can
easily manage the scale of your nodes based on
demand, ensuring you are as cost-effective as
you are efficient. Karpenter takes this further by
offering more responsive and faster scaling
alongside the Vertical Pod Autoscaler (VPA) and
Horizontal Pod Autoscaler (HPA), which adjust
your pods' resources and replicas to meet the
current needs, ensuring your applications are
always running optimally.

Logging and Metrics with Datadog,
Fluentd, and Cloudwatch

Visibility into your operations is a must. Datadog,
Fluentd, and Cloudwatch provide a
comprehensive view of your environment.
Datadog for its powerful monitoring capabilities,
Fluentd for its log aggregation, and Cloudwatch
for its seamless integration with AWS services,
ensuring you have all the metrics and logs at
your fingertips to make informed decisions.

Advanced tools for streamlined EKS cluster management

19

Advanced tools for streamlined EKS
cluster management
In this chapter, we highlight the range of technologies to use through ArgoCD (see next section) to streamline operations. These tools
facilitate continuous deployment, configuration management, and scalability of your EKS clusters. By automating these processes,
you reduce manual intervention, minimize errors, and maintain consistency across your environments.

Networking with VPC CNI

First up is VPC CNI. Networking is the lifeblood of
any Kubernetes cluster, and the AWS VPC CNI
plugin is a cornerstone. It can integrate your
clusters seamlessly with AWS's scalable
networking infrastructure, ensuring your pods are
first-class citizens within the VPC and benefit
from native AWS features like security groups
and VPC flow logs.

Storage Solutions: EFS CSI and EBS CSI

Storage can be another critical component of
your infrastructure. You can utilize both the EFS
CSI and EBS CSI drivers to provide your
applications with the flexibility and performance
they need. EFS for shared, scalable file storage
and EBS for block storage, ensuring your
applications have access to the persistent
storage solutions they require, optimized for their
specific needs.

Autoscaling: From Cluster Autoscaler
to Karpenter

Autoscaling is where you can genuinely embrace
the dynamic nature of cloud-native applications.
Starting with the Cluster Autoscaler, you can
easily manage the scale of your nodes based on
demand, ensuring you are as cost-effective as
you are efficient. Karpenter takes this further by
offering more responsive and faster scaling
alongside the Vertical Pod Autoscaler (VPA) and
Horizontal Pod Autoscaler (HPA), which adjust
your pods' resources and replicas to meet the
current needs, ensuring your applications are
always running optimally.

Challenges of Managing Kubernetes Clusters
Managing multiple Kubernetes clusters presents a significant challenge,
primarily due to operational overheads, complexity, and the steep learning
curve associated with Kubernetes’ complex ecosystem. As organizations
scale and deploy across various environments; production, staging, and
development, the need for a robust tool to streamline management
becomes crucial. Learn more about this via our blog:

20

Managing Ingress with NGINX and AWS LB
Controller

Ingress management is handled using NGINX
and the AWS Load Balancer Controller. NGINX
offers flexibility and powerful routing capabilities,
while the AWS LB Controller allows you to
leverage AWS's native load balancing solutions,
ensuring your services are always accessible
and performant.

The AWS Load Balancer Controller and NGINX
manage traffic routing and contribute to your
security strategy. The AWS Load Balancer
Controller can also be integrated with security-
focused features like rate limiting, IP whitelisting,
and WAF capabilities to protect against common
web vulnerabilities.

Streamlined Deployments with Helm and
ArgoCD

Deployment strategies are an area you can
mainly focus on optimizing. Helm charts allow you
to package and deploy applications consistently.
At the same time, ArgoCD enables a GitOps
approach to continuous delivery, ensuring your
deployments are automated, auditable, and
aligned with the infrastructure as code (IaC)
philosophy.

Advanced tools for streamlined EKS cluster management

5
Deployment
with ArgoCD

Enhance automation and control

22

Deployment with ArgoCD
After establishing a structured approach to managing EKS clusters using integrated CloudFormation
StackSets and AWS CodePipeline, the next step involves implementing advanced deployment
strategies to enhance automation and control. By adopting GitOps workflows with ArgoCD, you can
further streamline the management of Kubernetes clusters across multiple environments.

Diagram 3 illustrates a GitOps workflow using
ArgoCD to manage Kubernetes clusters across
DEV, ACC, and PRD environments. Centralized Git
repositories store Kubernetes manifests and
configurations, serving as the source of truth. The
management cluster runs ArgoCD instances for
each environment, continuously synchronizing
cluster states with the repository, ensuring
consistency.

Project-specific clusters (DEV, ACC, PRD) run
various drivers and agents, with ArgoCD
automating the deployment of updates from Git.
This setup exemplifies a structured approach,
ensuring reliable and consistent management of
Kubernetes clusters across different environments
through automated synchronization and version
control.

How to integrate ArgoC

With the theoretical model behind managing
Kubernetes explained, you might wonder how to
integrate ArgoCD into your ecosystem and the
benefits it can bring to your operations? In the
following subsections, we carefully explain to you
what practicalities are involved in doing so.

Diagram 3: deployment with ArgoCD

23

Tailored ArgoCD installations for each
environment

Understanding each environment's unique
demands and requirements — development,
staging, and production — you can opt for
separate ArgoCD installations for each. This
approach allows you to tailor the deployment
strategies and permissions according to these
environments' specific needs and security
protocols. By segregating the installations, you
can ensure that the configurations and
resources are optimized for the tasks at hand,
whether rapid iteration in development or
stability and security in production.

Automatic synchronization with Git

One core principle of GitOps is managing
infrastructure and application configurations as
code stored in Git repositories. ArgoCD excels in
this area by automatically synchronizing the
declared state in your Git repositories to all
configured clusters. Whenever a change is
committed to a repository, ArgoCD detects the
update and applies it across the relevant
environments, ensuring that your live
configurations always match the intended state
declared in Git. This automation reduces the
potential for human error and significantly
accelerates your deployment processes.

Environment-specific configurations

ArgoCD's flexibility lets you specify versions,
parameters, and configurations unique to each
environment directly within your Git repositories.
This capability is crucial for managing the
nuances between environments, such as scaling
parameters, resource allocations, and feature
toggles. By defining these configurations in Git,
you can maintain a single source of truth for your
infrastructure and application states. This
simplifies audits and rollbacks and enables
precise control over what gets deployed, where,
and when.

The Impact of ArgoCD on your
operations

Adopting ArgoCD can mark a significant
milestone in your journey toward a more
automated, secure, and efficient deployment
pipeline. It can streamline your operations and
boost your confidence in the reliability and
consistency of your deployments. With ArgoCD,
you can achieve operational maturity that allows
you to focus more on innovation and less on the
mechanics of deployment, knowing that your
infrastructure and applications are always in
sync with your intentions.

As you continue to evolve and scale your
operations, tools like ArgoCD will remain central
to your strategy. They enable you to navigate the
complexities of modern cloud-native
development with agility and assurance.

Centralized anagement through a
separate cluster

All ArgoCD instances can run on a dedicated
management cluster. This separation of
concerns enhances security by isolating the
deployment mechanism from the application
workloads and provides a centralized point of
control for managing deployments across all
environments. The management cluster acts as
the command center, where you can orchestrate
your deployments, monitor their status, and
enforce compliance and governance policies.

Deployment with ArgoCD

4. ebs-csi driver, vpc-cni driver,
datadog agent
These are key components for the
clusters: EBS CSI driver for
persistent storage, VPC CNI driver
for networking, and Datadog
agent for monitoring and logging.

Git Repositories
Stores the infrastructure and
application configuration files that
ArgoCD uses to deploy resources
across clusters.

3. Project DEV, ACC, and PRD
Clusters
Each environment (DEV, ACC, PRD)
hosts its own set of Kubernetes
clusters, ensuring isolation and
proper environment-specific
configurations

Management Cluster
ArgoCD is a continuous delivery
tool that automates the
deployment of applications and
infrastructure to Kubernetes
clusters based on GitOps
principles.

Kubernetes clusters across environments

Adopting GitOps workflows with ArgoCD
Deployment in ArgoCD syncs changes from Git
repositories to Kubernetes clusters. It ensures the
cluster state matches the Git configuration.

24

6
Mastering
autoscaling

Nodes and pods in harmony

26

Mastering autoscaling

Now you’ve successfully deployed
you set of operators through
ArgoCD, Autoscaling emerges as a
key instrument for seeking
operational excellence within your
Kubernetes clusters, ensuring your
infrastructure is responsive and
efficient. This capability is twofold,
encompassing the scaling of nodes
— the physical or virtual servers that
host your pods — and the pods
themselves.

Node Autoscaling: ensuring
Infrastructure Elasticity
A node autoscaling strategy is
underpinned by two key
components: you can start with the
Cluster Autoscaler and later migrate
to Karpenter.

The Cluster Autoscaler dynamically
adjusts the number of nodes in a
cluster based on the demand,
effectively scaling the cluster up
when the workload increases and
down when it decreases.

Pod Autoscaling: adapting to
workload variability
At the pod level, you can employ the
Horizontal Pod Autoscaler (HPA) and
the Vertical Pod Autoscaler (VPA) to
ensure your applications can handle
varying loads without manual
intervention.

This ensures that your cluster is never
over-provisioned or under-
resourced, aligning our infrastructure
costs closely with actual usage.

Karpenter represents an evolution in
node autoscaling, offering more
rapid and efficient scaling decisions
than the Cluster Autoscaler. It
proactively launches and terminates
nodes to match application
demands, and its ability to make
fine-grained decisions based on pod
requirements allows for more
efficient workload packing. This
reduces costs and decreases the
time it takes for pods to start running,
enhancing the overall
responsiveness of your applications.

Karpenter represents an evolution
in node autoscaling, offering more
rapid and efficient scaling
decisions than the Cluster
Autoscaler. This reduces costs and
decreases upstart time for pods.

Managing EKS at Scale, 2024

27

The HPA adjusts the number of pod
replicas in a deployment or replica
set based on observed CPU utilization
or other selected metrics. This
horizontal scaling approach is crucial
for stateless applications that can be
easily replicated to meet demand.

On the other hand, the VPA adjusts
pods' CPU and memory reservations
in a deployment, ensuring that each
pod has the resources it needs
without wasting infrastructure
capacity. This vertical scaling
approach is particularly beneficial for
stateful applications or those with
unpredictable resource
requirements, as it allows each pod
to be right-sized based on its
workload.

Mastering autoscaling: nodes and pods in harmony

The synergy of node and pod
autoscaling
The combination of node and pod
autoscaling ensures that your
Kubernetes infrastructure is agile and
cost-effective. By dynamically
adjusting the number of nodes and
the size or number of pods, you can
ensure that your applications always
perform optimally, regardless of the
workload.

This autoscaling synergy enhances
your operational efficiency and
supports your sustainability goals by
minimizing resource wastage. It
exemplifies your commitment to
leveraging cloud-native
technologies to build a resilient,
scalable, and efficient digital
infrastructure.

Putting the theory to work

The YAML configuration file above is for a Karpenter Provisioner, which manages the
dynamic provisioning of nodes in a Kubernetes cluster. It specifies the API version
(karpenter.sh/v1alpha5), resource type (Provisioner), and includes metadata such as the
provisioner name (multi-arch). The spec section details the provider reference,
consolidation settings, and node expiration time, conditionally set to 8 days for non-
production environments.

The configuration also sets resource limits (1 CPU and 1000Gi memory) and various
requirements for the nodes, including capacity type (differentiating between production
and other environments), instance categories, hypervisor type (nitro), availability zones,
CPU architectures (arm64 and amd64), and operating system (linux). This ensures nodes
meet specific criteria for efficient and tailored resource management.

16

Autoscaling example

7
Enhancements
& optimizations

Defining an Ingress resource with
appropriate annotations

30

Enhancements and optimizations
To effectively manage and route traffic in a Kubernetes cluster, leveraging an AWS Application Load
Balancer (ALB) Ingress Controller is highly recommended. This setup involves defining an Ingress
resource with appropriate annotations to configure the ALB’s behavior, such as specifying it as
internet-facing, setting target types to IP, and defining SSL policies and health check protocols.
Additionally, the Ingress rules direct traffic to backend services based on specified hosts and paths,
ensuring secure and efficient traffic management.

Pairing the Ingress resource with a corresponding Service
resource that selects backend pods and exposes necessary
ports completes the configuration. This approach allows
seamless handling of incoming traffic, SSL termination, and
health checks, providing a robust and scalable solution for
managing Kubernetes services. By implementing these
configurations, you ensure reliable and secure traffic
routing, optimizing your cluster’s performance and
maintainability.

Let’s discuss in-depth how you can optimize your setup.

Use AWS Load Balancer Controller to streamline the ingress
management. This tool dynamically provisions and manages
AWS Elastic Load Balancers (ELB) directly from within the
Kubernetes clusters. This has the following benefits:

Fine-grained control
With the AWS Load Balancer Controller, you can specify detailed
configurations for each load balancer, tailoring them to your
applications' specific needs. Depending on the use case, this
includes selecting between Application Load Balancers (ALB)
and Network Load Balancers (NLB).

Enhanced security
Integrating seamlessly with AWS WAF, the controller enables
robust security rules at the load balancer level. This capability is
crucial for protecting your applications from web-based threats
without the complexity of managing security at the ingress
controller level.

Simplified certificate management
The controller automates the provisioning and renewal of SSL
certificates through AWS Certificate Manager (ACM),
significantly reducing the operational hassle associated with SSL
management. This automation ensures that applications are
always served over secure connections with minimal manual
intervention.

Scalability and reliability
Leveraging AWS's global infrastructure, the AWS Load Balancer
Controller ensures your applications are highly available and
scalable. It automatically adjusts the load balancing capacity
based on incoming traffic, ensuring our applications remain
responsive under varying load conditions.

31

The Transition to AWS Load Balancer Controller

32

Ensuring that application pods are
evenly distributed across available
resources is paramount in
Kubernetes environments. This
distribution impacts the performance
and reliability of your applications
and plays a critical role in disaster
recovery and high-availability
strategies. To achieve this, leveraging
Kubernetes' (anti-)affinity rules is a
powerful feature that allows you to
fine-tune how pods are scheduled
and placed within your clusters.

(Anti-)affinity rules in Kubernetes
allow you to specify how pods should
be co-located or spread out across
the cluster. By defining affinity rules,
you can instruct the scheduler to
place pods based on various criteria,
such as proximity to other pods,
specific node characteristics, or even
across different availability zones for
higher resilience.

Anti-affinity rules allow you to ensure
that pods are not placed on the
same node or within the same zone,
which is crucial for avoiding single
points of failure. This is particularly
important for stateful applications or
those with high availability
requirements, as it minimizes the risk
of simultaneous downtime.

Practical Benefits
Strategically spreading pods can
optimize resource utilization across
the cluster, preventing scenarios
where specific nodes are
overburdened while others are
underutilized. This enhances the
overall performance of your
applications and contributes to cost
efficiency by ensuring that we're
making the most out of your
allocated resources on AWS.

Optimizing application resilience with (anti-) affinity rules

33

Implementing (Anti-)Affinity Rules
Implementing these rules involves
defining specific labels and selectors
within your pod specifications. For
instance, you might use anti-affinity
rules to ensure that pods belonging
to the same application tier are not
scheduled on the same physical
host, thereby reducing the risk of
correlated failures.
Additionally, the flexibility of these
rules allows you to make dynamic
adjustments based on your evolving
needs. Whether scaling up during
peak demand or deploying new
services, you can rely on
(anti-)affinity rules to maintain your
desired state of distribution and
resilience.

The Transition to AWS Load Balancer Controller

8
Monitoring
with Datadog

Providing a robust and scalable
solution for managing EKS

35

Monitoring with Datadog

As your EKS clusters grow and become more complex, and are hosting numerous of
applications, ensuring their smooth operation becomes increasingly critical. In this
section we would like to let you understand the importance of integrating a robust
monitoring solution like DataDog with your Karpenter-managed Kubernetes
environment.

One of Datadog's key strengths is its
comprehensive monitoring
capabilities. By collecting metrics,
logs, and traces, Datadog enables
you to monitor your clusters'
performance, identify bottlenecks,
and detect anomalies in real-time.
This level of insight is crucial for
proactive issue resolution and
optimizing your applications'
performance.

Effective monitoring is not just about
tracking resource usage; it's about
gaining comprehensive visibility into
your infrastructure, detecting
anomalies, optimizing performance,
managing costs, and ensuring
compliance. By the end of this
chapter, you'll understand why
monitoring is essential for
maintaining a high-performing,
efficient, and scalable EKS
infrastructure, and how to leverage
DataDog to achieve these goals.

Why Datadog?

Datadog is a monitoring and analytics
platform providing real-time insights
into your entire stack. Its ability to
aggregate metrics and logs from
various sources, including Kubernetes
clusters, nodes, and pods, gives you a
holistic view of your infrastructure and
applications.

DataDog can enhance your ability to
monitor resource utilization, detect
and respond to anomalies, plan
capacity, manage costs, and maintain
compliance. Comprehensive
Monitoring

36

Enhanced visibility
Datadog's dashboards and alerting
mechanisms enhance our visibility into your
Kubernetes environments. Customizable
dashboards allow you to tailor your
monitoring views to your needs, ensuring
critical metrics are always front and center.
Meanwhile, sophisticated alerting
capabilities ensure you are promptly notified
of potential issues, allowing swift action to
mitigate the impact.

Collaboration and troubleshooting
Datadog also facilitates team collaboration
by providing a shared platform for
monitoring and troubleshooting. This shared
context is invaluable when diagnosing
complex issues, enabling faster resolution
and minimizing downtime. Moreover,
Datadog's historical data and analytics
features support your continuous
improvement efforts by allowing you to
analyze trends and make data-driven
decisions.

Integration with Kubernetes
Datadog's seamless integration with
Kubernetes is a critical factor in its
effectiveness. By automatically discovering

Elevating monitoring with Datadog

and monitoring containerized
applications, Datadog simplifies the
setup and maintenance of your
monitoring infrastructure. This inte-

gration extends to various Kubernetes
distributions and services, ensuring
consistent monitoring across hybrid
and multi-cloud environments.

9
The path
ahead

Why managing EKS at scale is not just
about mastering the tool

38

The path ahead
The journey to managing Amazon EKS at scale is a multifaceted one, filled with both challenges and
opportunities. Throughout this eBook, we’ve explored the strategies, tools, and best practices that
enable organizations to confidently deploy and operate EKS clusters across complex environments.

Starting with the foundations, we demonstrated how a
centralized approach to managing infrastructure—while
maintaining flexibility for individual teams—lays the
groundwork for success. Automation, highlighted as the
backbone of scalable operations, ensures consistency and
reduces the burden of manual processes. Tools like AWS
CloudFormation, CodePipeline, and StackSets were shown
to bring structure and efficiency to even the most intricate
setups.

We then delved into the powerful role of deployment tools
like ArgoCD, which bring the benefits of GitOps to
Kubernetes environments. By synchronizing configurations
and enabling continuous deployment, ArgoCD transforms
the way teams manage their clusters, providing both
agility and reliability. Coupled with strategies like
environment-specific configurations and a tailored
branching model, these tools help bridge the gap between
innovation and operational stability.

Autoscaling emerged as a critical capability for ensuring
both cost efficiency and performance. The integration of
Karpenter, along with tools like Horizontal Pod Autoscaler
(HPA) and Vertical Pod Autoscaler (VPA), showcased how
dynamic scaling at both the node and pod levels can
ensure infrastructure elasticity while optimizing resource
usage.

The book also addressed the importance of monitoring
and visibility. As Kubernetes environments grow, solutions
like Datadog offer real-time insights, anomaly detection,
and collaborative troubleshooting, ensuring operational
excellence while supporting a proactive approach to issue
resolution.

Finally, we discussed enhancements and optimizations—
covering everything from traffic routing with AWS Load
Balancer Controller to leveraging anti-affinity rules for high
availability. These strategies not only improve the
performance and security of your applications but also
ensure your architecture is prepared to scale seamlessly
as demands evolve.

As organizations continue to adopt cloud-native
technologies, the need for robust, scalable, and efficient
infrastructure becomes even more critical. Managing EKS
at scale is not just about mastering the tools—it’s about
creating a culture of innovation and collaboration. Teams
empowered with the right frameworks and practices can
shift their focus from managing infrastructure to delivering
business value.

Jurg van Vliet

CEO of Aknostic

39

“This guide’s aim is to ensure that every development
team can focus on their applications without being
bogged down by the intricacies of the infrastructure
that powers them. We shares insights and
methodologies that have proven effective in real-world
scenarios. Because efficiency and automation are not
just goals; they're necessities.”

